

Automated front wall feature extraction and material assessment using fused LIDAR and through-wall radar imagery

Pascale Sévigny DRDC - Ottawa Research Center Jonathan Fournier DRDC - Valcartier Research Center

NATO SET-241 Military Sensing Symposium 31 May - 2 June 2017

Canada

Through-wall synthetic aperture radar (TWSAR) and LIDAR Main objectives

The concept of operation

- The vehicle-mounted system is driven in front of a building of interest
- Standoff distance: typically a few meters to 20 meters

LIDAR data processing

- LIDAR point cloud: Riegl VZ400 laser scanner
- Trajectory data: Applanix POS-LV geopositioning system
- In the context of this work, the objectives of the point cloud processing are:
 - to automatically find wall planes

RDDC

 to determine the location of the solid wall, i.e. not openings or not obstructed by foreground objects

Extraction of wall planes

- Ground plane points are removed
 - Using optimized version of the random sample consensus (RANSAC) algorithm
 - A point is considered to be part of a plane if it meets two criteria:
 - its distance to the plane must be below a given threshold
 - its corresponding local normal vector must be aligned with the normal of the plane
 - Ground plane if normal has a strong vertical component
- Outliers are removed
- Remaining points are grouped into clusters
 - Euclidean Cluster Extraction algorithm
 - Minimum number of points in a cluster is set to 10
 - Maximum distance between two points that are part of the same cluster is set to 0.5 m

Front wall

Each cluster is analyzed

- Potential wall plane if vertical and if normal is perpendicular to the direction of travel of the vehicle.
- Real wall if height is greater than 1.7 m (5 ft) and area is greater than 2m²

- Front wall is used to align the computation reference frame with a corner of the wall
 - For both LIDAR and TWSAR

2-D occupancy grid

- Projection of 3-D front wall point cloud onto 2-D array of discrete cells
- Four possible states:
 - solid wall (wall material)
 - non-solid wall (objects in front of the wall e.g. electrical boxes, poles)
 - transparent (openings)

 $x_i \notin x_w$ otherwise

undefined

RDDC

 TWSAR processing requires the set of x values for which the wall is primarily solid wall. We use:

 $x_i \in x_w$ if 75% of $M_w(x_i, z)|_{\text{all } z}$ is solid wall

Through-Wall Synthetic Aperture Radar (TWSAR)

- The radar includes both COTS and custom components
- L-band FMCW radar (0.8 to 2.7 GHz)
- The antenna system is made of compact Y-shaped printed bowtie elements
 - very wide beamwidth
 - ideal for squinted look angles

- Range or across-track resolution
 - obtained by virtue of the large radar bandwidth
- Azimuth or along-track resolution
 - achieved through synthetic aperture radar processing with fixed synthetic aperture angle (50 degrees or 90 degrees)
- Elevation resolution (3.4°)
 - obtained with the physical vertical array

3-D SAR image of wall signature

3-D SAR image of wall signature

- 50 degree synthetic aperture angle:
 - specular reflection, highlights flat surfaces
- 90 degree synthetic aperture angle
 - highlights corners

50 deg 🖫

90 deg

For this study

Top view 2-D SAR images of the 17 walls

Results of clustering using two features

Difference between mean and standard deviation, for both lines

Results of clustering using two features

Results of clustering using two features

Summary

- Fused LIDAR and TWSAR information to obtain wall category
- Automated the algorithms
- Testing with larger number of samples is required
- Further post-processing is desirable to estimate wall thickness or to detect behind the wall anomalies
 - Specific to a wall category

further processing for thickness determination, anomaly detection, etc.

Example of anomaly detection

Template matching using Sum of Absolute Differences (SAD)
Vinyl/gypsum/wood studs walls

DRDC | RDDC

SCIENCE, TECHNOLOGY AND KNOWLEDGE FOR CANADA'S DEFENCE AND SECURITY SCIENCE, TECHNOLOGIE ET SAVOIR POUR LA DÉFENSE ET LA SÉCURITÉ DU CANADA

